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Abstract
Civil infrastructure systems are disturbed by natural or man-made hazards at an increasing frequency and severity. Among these
systems, transportation systems are especially vulnerable due to their nature and are of significant importance to urban built
environments as theymaintain the mobility of urban dwellers and goods.Mobility disturbances are significant not only due to the
direct losses associated but also due to the greater economic impacts driven by indirect losses stemming from the economic
interactions of regions and sectors. Therefore, understanding the economic impacts of urban mobility disturbances is critical. To
achieve a better understanding of the status quo of the research on transportation disturbances and economic impact analysis, a
literature review was conducted. The review indicates that most of the articles fail to leverage realistic hazard impact information
and explicit network modeling, consequently jeopardizing the credibility of the results. To begin addressing the gaps in the field,
an interdisciplinary framework was designed to investigate the economic impacts of mobility disturbances. To validate the
framework, a case study was conducted to estimate the economic impacts of commuting-based mobility disturbances resulting
from a potential earthquake scenario in the Greater Los Angeles Area. The direct and indirect economic losses were estimated to
be 285.49 and 93.48 million dollars, respectively. The results indicated that the economic losses could vary significantly among
regions as well as industries. Among the five counties in the study region, Los Angeles County suffered the most. In addition,
industries related to finance, education and scientific services, etc. were estimated to experience larger losses.
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1 Introduction

Civil infrastructure systems are the fundamental facilitators in
urban built environments. Transportation systems, among

civil infrastructures, are essential to the functionality of cities,
supporting the mobility of their inhabitants, and the exchange
of goods and services. Due to their nature, transportation sys-
tems are vulnerable to hazards such as traffic accidents, terror-
ist attacks, extreme weather events, etc. Hazards disturb trans-
portation systems at an increasing rate and severity to cause
physical damage leading to losses in the functionality of trans-
portation infrastructures. These physical damages result in
direct economic losses that diffuse and expand continually
through economic activities between different regions and in-
dustries, exacerbating the totality of losses. It is estimated that
a hypothetical disruption of Seikan Tunnel in Japan can cause
1.33 billion dollars losses to China, Korea, and other regions
based on a transnational and interregional input-output model
(Irimoto et al. 2017). Therefore, investigating the economic
impacts of hazards beyond the immediate (direct) losses and
studying the diffusion of the impact among industries and
regions are critical. A comprehensive accounting of total
losses (including direct, indirect, and induced costs) requires
the incorporation of interindustry economics in the form of
economic impact analysis models.
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Economic impact analysis is widely used to estimate eco-
nomic losses due to natural and man-made hazards. In the
current state of economic impact analysis research, input-
output models (IO) and the computable general equilibrium
(CGE) models are the most common approaches. In this do-
main of economics research, Cochrane (1974) pioneered the
use of interindustry economics in disasters context focusing
on earthquakes. Hallegatte (2008) proposed the Adaptive
Regional Input-Output model and applied the adaptive IO
measures to the impact assessment of Hurricane Katrina.
Park et al. (2005b) and Park (2008) constructed coupled
demand-driven and supply-driven regional input-output
models based on IMPLAN and CFS data, and applied it in
the evaluation of the hypothetical terrorist attacks on civil
infrastructure. In CGE modeling for disaster economics,
Rose (2004) and Rose and Liao (2005) estimated the regional
economic impacts of water supplies disruptions using a CGE
model and considered resilience measures. Other researchers
incorporated non-economic methodologies such as the
Inoperability Input-Output model (Crowther et al. 2007).
However, economic impact analysis literature related to disas-
ters and their impacts on urban built environments focuses
exclusively on individual components of infrastructure sys-
tems (e.g., a bridge instead of the road network). This leads
to the inability to incorporate the spatially distributed and
networked nature of civil infrastructures into the impact as-
sessment. From a functionality perspective, this is a major
shortcoming of the works in this domain, as components of
infrastructure systems are fundamentally dependent on the
status of the network to carry out the desired functions.
Thus, e.g., if one studies the impact of an earthquake on a
single freeway bridge or even a small group of bridges that
do not represent the bridge network in an urban area realisti-
cally, the analysis cannot produce comprehensive insights re-
lated to the overall economic impact. This is because when an
earthquake hits an urban area (or any other natural hazard with
spatially distributed impacts), it affects a wide area and ex-
poses the entire urban transportation network due to that pos-
sible propagation of failed individual components.

Only a handful of studies investigated the economic im-
pacts of disturbances to spatially distributed and networked
transportation systems. A predominant number of these stud-
ies assumed (hypothetically or based on hazard information)
the failure of a small subset of infrastructure components and
did not study the full spectrum of the potential impacts, i.e.,
functionality losses that spread well beyond a small subset of
infrastructures, due to a locally relevant natural or man-made
hazard. Naturally, this led to a lack of attention towards the
fine-resolution analysis of urban transportation disturbances
coupled with economic impact analysis. To address this gap,
a multi-disciplinary framework is designed by the authors to
investigate hazard-induced disturbances to urban mobility and
overall their economic impacts in urban areas. To validate the

designed framework, this paper conducts a case study, which
focuses on the disruption of commuting in the Greater Los
Angeles Area and the associated economic impacts through-
out the region.1 The paper is structured as follows. In the next
section, the authors provide the background and the status quo
in economic impact analysis of transportation disturbances,
carefully categorizing published work in the domain. Then,
the designed framework is introduced, and the Greater Los
Angeles Area case study is discussed with extensive details
before the results and the discussion thereof are presented.

2 Literature Review

In order to draw a picture of the status quo of this domain, the
authors carried out a literature review. Prior research in the
area that focuses on estimating the economic impacts of trans-
portation disturbances was retrieved fromWeb of Science. An
initial list of papers was derived by searching various sets of
keywords and keyword groups such as Beconomic losses,^
Bhazard,^ Bdisaster,^ Bdisruption,^ Btransportation,^
Beconomic impact analysis,^ and Bsupply chain disruption.^

The authors did not set a date of publication constraint on
the relevant works. However, some articles were excluded
from the review with respect to the following criteria. First,
articles written in other languages than English were moved
out. In addition, articles with explicit transportation network
modeling but missing economic analysis were not included
because these works only study the impacts of transportation
disturbances from an engineering point of view, largely focus-
ing on infrastructure management, transportation safety, traffic
optimization, etc. Lastly, studies investigating the economic
impacts of the disruptions to other kinds of infrastructure sys-
tems (e.g., power plants or water supply system disruptions)
or papers without a clear analysis of the losses resulting from
the disturbance of the transportation sector were removed
from the review inventory (Aloughareh et al. 2016; Koks
and Thissen 2016; Koks et al. 2016). This way, 25 articles
were identified, and another 17 articles were found by survey-
ing the references of the original 25 or by going through their
listed publications of the authors. Out of the 42 publications
identified in the end, 37 were peer-reviewed journals, 5 were
conference papers, and 1 was a technical report.

The publications in the review inventory were categorized
with respect to the following three dimensions. (1) Scope of
Network Modeling and Analysis, to identify whether the arti-
cle accommodates an explicit transportation network model-
ing approach; (2) Scope of Hazard Impact Information, to
distinguish the articles based on the hazard data used for direct
damages on the transportation infrastructure. Here, the

1 Please note that this paper is complementing an earlier publication by the
authors (Wei et al. 2018).
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categorization is (i) simple assumptions for hazard impacts,
(ii) reported or reviewed impacts, (iii) impacts found from
realistic hazard simulations, or (iv) no hazard impact informa-
tion; (3) Scope of Economic Modeling and Analysis, to iden-
tify the methodologies of economic impact analysis used in
the articles. It should be noted that all these papers were put
into six categories which are possible combinations of results
from the first two scopes. Within each category, the scope of
economic modeling was also used as another categorization
criterion. The results of this scheme are presented in Tables 1
and 2. Detailed discussion of these papers were conducted in
our previous work (Wei et al. 2018); thus, it would be not fully
presented in this paper.

Considering the economic modeling approaches used in
the reviewed studies, most articles only present an estimation
of the Bdirect^ impacts by simple mathematics. These articles
do not take interindustry diffusion effects or interregional eco-
nomic activities into consideration. Among the papers with
intact economic impact estimation methodologies, IO model-
ing and IIM modeling are widely used approaches. In addi-
tion, there are several examples of CGE and SCGE models
(spatial CGE) as well. However, most of these works leverage
hypothetical hazard scenarios as the basis of their economic
impacts analysis.

With respect to the hazard impact information that is incor-
porated into the studies, most of the articles are based on
simplified assumptions such as the shutting down of a bridge
over a week due to a hypothetical hazard. This type of ap-
proach does not utilize a sophisticated understanding of the
hazard. In addition, only a small subset of the articles in the
review inventory carry out their economic analyses based on
reviewed or reported hazard information, i.e., hazards that
have occurred in the past with documented and reported
impacts. Out of the 42 publications reviewed, only 7

incorporated hazard impact information derived from
realistic hazard simulations. Among them, 5 papers
incorporated explicit network modeling. Zhou et al. (2010)
calculated the social costs of drive delay and loss of opportu-
nity caused by degraded network under a set of earthquake
scenarios in order to evaluate the social-economic effect of
seismic retrofit of bridges. Sohn et al. (2003) evaluated the
significance of several bridges by quantifying the economic
losses due to the 1812NewMadrid earthquake. Postance et al.
(2017) conducted economic estimation for scenarios of road
segments disruptions simply by multiplying increasing travel
time with national user generalized cost without considering
any ripple effects of transportation disturbances. Cho et al.
(2001) and Gordon et al. (2004) estimated direct, indirect,
and induced economic losses of Elysian Park earthquake
scenarios.

On the other hand, it is noticed that papers without trans-
portation network modeling outnumbers papers with explicit
network modeling (as shown in Fig. 1). Within the subset of
papers that do not accommodate explicit network modeling,
only Gueler et al. (2012) and Park (2008) investigate multi-
modal issues (e.g., waterway, rail and truck). Among papers
with explicit network modeling, most of the work focuses on
the calculation of the direct transportation related costs such as
increased travel or warehouse costs. Few studies estimated the
indirect economic losses based on the direct losses (i.e., de-
creased proportion of initial production or demand), which
were hypothetical or simply set according to historical
records.

Based on this information, the authors drew the conclusion
that only a few researchers conducted comprehensive eco-
nomic analyses based on integrated transportation network
modeling and realistic hazard simulations, especially focusing
on the economic impacts of urban mobility disturbances.

Table 1 Illustrating the reviewed studies without explicit network modeling and analysis

Scope of hazard impact information

Simple assumptions Reported/reviewed impacts Realistic (simulated)
hazard impacts

Scope of economic modeling Simple math Gueler et al. (2012), Tan et al. (2015),
Zhang and Lam (2016), Oztanriseven
and Nachtmann (2017)

Jaiswal et al. (2010),
Kajitani et al. (2013)

Zhang and Lam (2015)

IO Park et al. (2005a), Park (2008), Park et al.
(2008), Li et al. (2013), Rose and
Wei (2013), Irimoto et al. (2017)

MacKenzie et al. (2012),
Tokui et al. (2017)

IIM Santos and Haimes (2004), Lian and Halmes
(2006), Wei et al. (2010), Pant et al. (2011),
Thekdi and Santos (2016)

Yu et al. (2013)

CGE Xie et al. (2014)

SCGE Ueda et al. (2001), Tatano and Tsuchiya (2008)

CGE; IO Rose et al. (2016)

Others Thissen (2004)
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Simplified assumptions were widely used, and most of the
research in the area did not leverage explicit transportation
network modeling during this process, which compromised
the reliability of the research outcomes. The authors designed
a multi-disciplinary framework to fill these gaps. In the next
section, the framework is discussed in detail.

3 Framework

In order to address the gaps discussed above, a multi-
disciplinary framework was designed (Wei et al. 2018) and
refined as shown in Fig. 2, and a full case study was imple-
mented for validation. This multi-disciplinary framework
makes use of state-of-the-art, realistically conducted hazard
simulations together with explicit and holistic network model-
ing, and is able to estimate the economic impacts of hazard-
induced transportation disturbances. In the case study that is
conducted to validate the framework, a potential earthquake

event is studied where the commuting in Greater Los Angeles
Area is disrupted. The framework is broadly translatable to
other types of hazards as well as different types of transporta-
tion modes and to different urban regions if data availability is
assured.

It also should be emphasized that the discussions in this
paper focus entirely on the economic analysis facet of a larger
framework. The economic facet takes the increase in traveling
costs quantifying the commuting disturbance resulting from
the loss of functionality in the transportation network as inputs
for economic impact analysis. There are two reasons for fo-
cusing on the consequences of commuting disturbances in the
initial deployment of the framework. First, commuting distur-
bances can be easily triggered by physical damages to trans-
portation systems, such as bridge disruptions,2 or other events
such as strikes or blackouts. The consequences of commuting
disturbances cannot be ignored since they affect urban
dwellers virtually five days a week and in many urbanized
regions, dwellers take long distances to reach their workplaces
on a daily basis. In addition, despite the previous research in
the economic costs of commuting by economists and policy-
makers engaging in transportation for the purpose of house-
hold expenditure analysis, traffic optimization etc., the eco-
nomic impacts of hazard-induced commuting disturbances
have been rarely studied from a perspective that integrates
science on hazards, engineering, and economics, which is also
verified in the literature review presented. It is of critical im-
portance to approach this problem in a more comprehensive
manner, i.e., by accommodating results of realistic disaster
simulations as well as taking insights from fine-resolution
infrastructure network modeling coupled with mobility anal-
ysis into consideration. This way, a comprehensive evaluation
of commuting disturbances can be carried out to better under-
stand the influence on regional economies.

2 It is widely assumed as well as accepted in transportation safety domain that
bridges are the most important components in transportation infrastructure.

Table 2 Illustrating the reviewed studies with explicit network modeling and analysis

Scope of hazard impact information

Simple assumptions Reported/reviewed impacts Realistic (simulated)
hazard impacts

Scope of economic modeling Simple math Xie and Levinson (2011), Ashrafi et al.
(2017), Omer et al. (2013), Vadali et al.
(2015)

Mesa-Arango et al. (2016) Postance et al. (2017),
Zhou et al. (2010)

IO Park et al. (2011), Cho et al. (2015) Cho et al. (2001), Gordon
et al. (2004), Sohn et al.
(2003)

CGE Tirasirichai and Enke (2007)

SCGE Tsuchiya et al. (2007), Kim and Kwon (2016)

Econometric Greenberg et al. (2013)
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The economic impact analysis facet of the framework
takes the increases in commuting times and distances
(worsened due to hazard impacts) as its inputs to calculate
the increase in commuting costs. These costs can be in-
fluenced by transportation network disruptions through
two major ways. First, the driving operation costs increase
with increasing driving distances. Commuters may have
to change their daily driving routes in order to reach their
workplaces if, e.g., a bridge on their original route is out
of service for a certain period of time after an earthquake.
These detours may result in increasing distances of travel.
A detour can also happen if commuters want to avoid
congestions since some of the transportation infrastructure
components cannot fully perform their intended functions
due to physical damages.3 With increasing distances of

travel, more fuel will be demanded, and the maintenance
and repair costs will surge as well. Another contributor to
the increasing economic costs of commuting could be the
longer time spent on commuting due to detours and con-
gestion. People may need to substitute the time spent on
other activities such as leisure and entertainment, or on
economic production. Thus, the value of travel time has to
be taken into consideration.

Note that one of the major assumptions made here is
the constant commuting demand before and after the di-
saster (e.g., commuters continue completing their home-
workplace trips after an earthquake), which is a widely
accepted assumption by researchers in the field (Stergiou
and Kiremidjian 2006; Faturechi and Miller-Hooks 2014).
However, the travel times and distances fluctuate as men-
tioned before. This causes a rise in commuting costs that
are passed on to the consumers in the region. To capture
the resilience of the network and the regional economy,

3 The multi-disciplinary framework is unable to deal with this factor currently;
however, this is a limitation that our future work will address.

Fig. 2 Illustration of the conceptual framework
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commuting disturbances are collected in discrete time
steps over the study period. This way, the improving com-
muting costs and the impact in the regional economy were
observed as restoration of the transportation systems ad-
vances with time, e.g., bridges are repaired and opened to
traffic again. Finally, the increasing commuting costs are
taken as the direct losses caused by transportation net-
work disruptions and the ripple effects on the economy
are studied based on supply-side and demand-side input-
output models.

3.1 Estimating Costs of Increasing Travel Distance
and Time

The initial losses are calculated by increasing mobility
costs, i.e., increasing travel distances and times due to
mobility disturbances. Assume that there are M regions
and N industries. In the following mathematical rela-
tions, i and j (i, j = 1, 2, … M) denote the origin and
destination regions, respectively, and k (k = 1, 2, … N)
denotes production sectors.

The following facilitation of the economic impact analysis
methodology is carried out for commuting by driving only,
towards the use of the framework in the case study. Note that
the methodology is translatable to other urban mobility modes
given data availability.

Economic costs of increasing travel distances are calculat-
ed by multiplying the total increasing travel distance with
average operation costs:

ΔTDCk
ij ¼ ΔTDk

ij � AOCk
ij ð1Þ

where

ΔTDCk
ij is the cost of increasing travel distance (referenced

to business-as-usual baseline network) from origin region4 i to
destination region j for sector k;

ΔTDk
ij is the increase in total travel distance summed up for

commuting trips from region i to j referenced to the baseline

total, and AOCk
ij is the average operation cost of driving. This

is to account for the costs of fuel, maintenance, and other fees
such as tires, in which higher fuel consumption is the largest
contributor. Operation costs of driving are taken from the
Bureau of Transportation Statistics5 and from reports pub-
lished by other research institutions.

It should be noted that there are some other costs of increas-
ing driving distances such as mileage reimbursements.

However, quantification of those are non-trivial due to
the lack of open data sources and standard criteria on
how much reimbursement is awarded by employers. In
addition, the different treatment of reimbursements in dif-
ferent industries further complicates a global quantifica-
tion. Therefore, only the operation costs are included in
the framework.

Economic costs of increasing travel time are calculated
simply by multiplying the total increasing travel time with
the value of travel time. It is generally assumed that travel
time has a negative demand because consumers are will-
ing to pay for less of it (Fallis 2014). One way to quantify
the value of travel time is by the monetary value of travel
time savings (VTTS). However, this process is hard to
practice due to lack of observable market prices
(Tirasirichai 2007). There are multiple factors that can
lead to variance in VTTS, for instance, travel modes, trip
purposes, comfort levels, personal characteristics, and
hourly wages. Therefore, simplifications are necessary.
The US Department of Transportation published a set of
guidance reports on value of time6 in which the costs of
employment are taken as the base value for quantifying
VTTS. In this framework, values in the California Life-
Cycle Benefit/Cost Analysis Framework are used.
Consequently, the cost of increasing travel time is calcu-
lated as follows:

ΔTTCk
ij ¼ ΔTTk

ij � ATCk
ij ð2Þ

where

ΔTTCk
ij is the total cost of increasing travel time from origin

region i to destination region j for sector k.
ΔTTk

ij is the increase in total travel time summed up for
commuting trips from region i to j referenced to the
total for the baseline network.

ATCk
ij is the average tradeoff value of time. This is to

account for the time spent by commuters in
driving instead of income generating or leisure
activities.

This way, the total cost of increasing travel distances and
times is

ΔTCk
ij ¼ ΔTDCk

ij þ ΔTTCk
ij ð3Þ

where

ΔTCk
ij is the increase in total travel cost from origin region i

to destination region j for sector k.4 The economic region in the full deployment of the framework will be the
regions in Los Angeles that we have the input-output table for.
5 These values are published annually by Bureau of Transportation Statistics.
Average cost of driving includes fuel, maintenance, and tires. Available online
at: www.rita.dot.gov/bts

6 These values are conducted out by the California Department of
Transportation and recommended to be used in statewide transportation pro-
jects analysis.
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3.2 Estimating the Impact Through Interindustry
Economics: Supply-Side IO Model

Ghosh (Ghosh 1958) proposed the supply-side input-output
model in 1958, which has similar characteristics to the
Leontief Input-Output model. The supply-side IO model is
able to track the impacts of supply-side changes on the pro-
duction of industries and quantify the corresponding output
losses. Although it has been criticized for its plausibility fol-
lowing its proposition (Oosterhaven 1988), many researchers
have addressed this problem by interpreting it as a price model
(Dietzenbacher 1997).

In this framework, the supply-side IOmodel is employed to
estimate the impacts of added commuting costs on the region-
al economy. Since consumers might spend their income in any
county of the Greater Los Angeles Area, the influences of
rising commuting costs on consumer expenditure are not
quantified separately. To be specific, the increasing commut-
ing costs caused by increasing travel distances and times for
sector k are aggregated by regions, and then one supply-side
IO model is used to estimate the decreased consumer expen-
diture in the Greater Los Angeles Area.

For sector k, the total increasing travel cost summed up for
all commuters is aggregated as the following:

ΔTCk ¼ ∑M
i¼1∑

M
j¼1ΔTCk

i j ð4Þ

Next, the decreasing consumer expenditure is calculated
using a regional supply-side IO model:

ΔCEk ¼ ΔTCk � I−Bð Þ−1 ð5Þ
where

ΔTCk
ij is the total price inflation for sector k due to

increasing travel distances and times.
ΔCEk is the decrease in total consumer expenditure for

sector k after costs inflation effect;
(I − B)−1 is the output inverse matrix and B is the direct

output coefficients matrix of the Greater Los
Angeles Area.

Assume that there are no new producers entering the
Greater Los Angeles Area market. Due to the different
levels in local economic development (e.g., average
hourly salary and average living costs can vary from
region to region), the decreasing consumer expenditure
is reallocated to each county according to their house-
hold final demand as follows:

ΔCEk
j ¼ ckj �ΔCEk ð6Þ

where

ΔCEk
j is the decreased consumer expenditure in region j for

sector k;
ckj is the household consumer expenditure ratio of

region j to the Greater Los Angeles Area.

3.3 Estimating the Impact Through Interindustry
Economics: Demand-Side IO Model

Next, demand-side IO models are employed in order to
estimate the economic impacts based on reduced final
demand.

Since Leontief proposed the input-output model in
1936 (Leontief 1936), it has been widely introduced into
many domains. It is a transparent model that is easy to
operate for estimating the indirect economic impacts of
decreasing final demand. It is assumed that there are no
substitution effects and consumer expenditures have direct
impacts on final demand, which is an assumption that was
previously proposed and used in the TransNIEMO model
(Cho et al. 2015). This enables the calculation of the
backward linkage impacts calculated based on demand-
side IO models. In our framework, total output losses
are estimated leveraging an approach similar to Park et
al. (Park et al. 2005a).

For sector k, the total output loss in destination region j is

ΔX k
j ¼ I−Að Þ−1j � −ΔCEk

j

� �
ð7Þ

where

ΔX k
j is the decrease in total output in destination

region j for sector k;
I−Að Þ −1

j is input inverse matrix and A is direct input
coefficients matrix in destination region j.

Finally, the economic impacts of commuting disturbances
can be aggregated by regions and by sectors.

The total impacts by regions are

∑N
k¼1ΔX k

j ð8Þ

The total impacts by sectors are

∑M
j¼1ΔX k

j ð9Þ

4 Case Study

As discussed above, a case study was conducted to
validate the designed framework. The case study
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focuses on the commuting disturbances caused by an
earthquake scenario in the Greater Los Angeles Area.
As the second-largest urban region in the USA, the
region is known to suffer from traffic, with its dwellers
having to endure long commuting times and distances to
reach their workplaces. Public transit is still not a viable
alternative and about 85–90% of the workforce uses the
driving mode for commuting. The region encompasses
five counties, namely, Los Angeles, Orange, Riverside,
San Bernardino, and Ventura counties. Model year is set
to be 2017.

4.1 Assumptions and Data Sources

Several assumptions have been made in order to esti-
mate the direct and indirect economic impacts. First,
the travel demand remains constant after the hazard,
as discussed above within the section that introduces
the framework. In other words, commuting times and
distances are affected by infrastructure system disrup-
tions (i.e., functionality losses in bridges as the most
critical links in the urban transport network), while the
number of commuters, and their origins and destina-
tions, is assumed to remain unchanged. This is a wide-
ly used assumption in transportation network resilience
research (Stergiou and Kiremidjian 2006; Faturechi and
Miller-Hooks 2014). Second, in terms of economic im-
pacts, only the disturbance to the commuting by driv-
ing is considered for reasons described above related to
the study region. Lastly, the extra costs of increasing
travel times and distances are measured based on the
value of travel time and value of operation, respective-
ly. Other costs such as ownership costs (i.e., car depre-
ciation, license and registration fees, etc.) are not
included.

In this case study, the direct losses and indirect eco-
nomic influences of commuting disturbance are estimat-
ed using supply-side and demand-side IO models based
on their work. Regional input-output data are obtained
from IMPLAN Group (Minnesota IMPLAN Group
2018). The 536 industries are aggregated into 7 indus-
tries by authors in order to ensure compatibility with
the commuting disturbance results. The value of travel
time ($13.65 per person hour by automobile in 2016)
in vehicle operation cost parameters7 published by
California Department of Transportation8 is used to cal-
culate the initial losses of increasing travel times. The

value of fuel price ($3.080 per gallon, including taxes)9

from the US Energy Information Administration and
value of driving operation costs ($7.91 cents per mile
for maintenance, repair, and tires)10 published by the
American Automobile Association are used to calculate
the initial losses of increasing travel distances.

4.2 Data Processing

The case is conducted as follows. First, for each industry, total
travel times and distances between five counties are calculated
by multiplying the numbers of commuters with average travel
times and distances. This task is carried out five times for
baseline and degraded network versions on day 0 before the
hazard, and days 1, 7, 30, and 90 after the hazard. These
discrete intervals result from the hazard simulations carried
out using HAZUS parameters. HAZUS is a hazard-
simulation software package distributed by FEMA in the US
(Federal EmergencyManagement Agency 2018). This is done
to cover the hazard timeline holistically as losses in transpor-
tation network functionality affect commuting patterns until
full recovery (assumed to happen at the end of model year, on
day 360). This way, changes in total travel times and distances
during the hazard timeline can be calculated in a step-wise
manner. For instance, from day 1 to day 7, the increase in total
travel time from county i to county j for sector k is

ΔTTk; day 1 to day 7
ij ¼ 7−1ð Þ � TTk;day 7

ij −TTk;day 1
ij

� �
ð10Þ

Then, total direct costs caused by increasing travel dis-
tances and times can be calculated based on Eqs. (1) and (2),
respectively. These costs are aggregated by all origins and
destinations based on Eq. (4), which are taken as the initial
losses caused by the disturbance of commuting mode of
mobility.

Next, the decrease in consumer expenditures is estimated
by Eq. (5) and are reallocated to five counties based on their
final demand consumer expenditure, which are obtained from
IMPLAN. Lastly, demand-side IO models are employed to
calculate the total output losses as Eq. (7).

5 Results and Discussion

Figure 3 shows the direct, indirect, and total output
losses in the Greater Los Angeles Area for one year.

7 The Vehicle Operation Cost Parameters are statewide representative average
values recommended by the California Department of Transportation to be
used in the economic analysis of highway and other projects.
8 California Department of Transportation, Vehicle Operation Cost
Parameters, http://www.dot.ca.gov/hq/tpp/offices/eab/benefit_cost/LCBCA-
economic_parameters.html, last accessed 2018/4/25.

9 Retail Gasoline and Diesel Prices, U.S. Energy Information Administration,
https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_y05la_a.htm, last accessed
2018/4/25.
10 Your Driving costs Report 2017, American Automobile Association
(AAA), https: / /exchange.aaa.com/automotive/driving-costs/#.
WsNoF2hL82x, last accessed 2018/4/25.
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Direct losses refer to the decreased consumer expenditure
that includes the initial costs of increasing travel times
and distances, and the direct losses caused by increasing
travel costs. Indirect losses denote those losses caused by
direct losses due to input-output activities between sec-
tors. Total losses are estimated comprehensive economic
impacts with the impacts of economic transactions taken
into consideration. The indirect economic loss caused by
commuting disturbance is about 93.48 million dollars,
accounting for 24.67% of total economic losses.
Industry-specific information is shown in Table 3. It
should be noticed that the initial loss of Industry 4 (in-
formation, finance and insurance, real estate and rental,
professional-scientific and technology services, manage-
ment of companies, administrative and waste services)
expands dramatically through the economic activities
and results in great indirect and total losses, which indi-
cates that Industry 4 is very sensitive to disturbances
(Table 3).

Figure 4 shows the total output losses in five counties.
Direct and indirect losses and other detailed information are
shown in Table 4. Los Angeles County’s total output loss is
considerably larger than the other four counties’. This might

be due to its relatively larger population and densely devel-
oped economy.11 For the initial increasing traveling costs
caused by commuting disturbances, over 80% happens within
the Los Angeles County.

Total output losses per industry are shown in Table 5 for
the five counties. Although its total output losses are com-
parable to other industries, Industry 5 (education services,
health and social services) experiences a relatively severe
damage relative to its own output as indicated in Fig. 5. A
potential reason is that the industry is one of the largest
employers in the region being more exposed to the distur-
bance in commuting. Take Los Angeles County as an ex-
ample, the proportion of employment in 2017 for Industry
3, Industry 4, and Industry 5 is 18.89, 18.79, and 17.88%,
respectively.12 Therefore, the direct losses of Industry 5
caused by commuting disturbance being greater than other
industries aligns with the reasoning above. This is also
verified by the relatively smaller indirect losses for
Industry 5 compared to its direct losses as indicated in
Fig. 3.

The aforementioned insights could enlighten the
policy-making in the mitigation of economic impacts
resulting from commuting disturbances, and improve-
ment of the overall economic resilience to natural and
man-made disasters. For industries that have great direct
losses such as Industry 5, which indicates that transpor-
tation disturbances have huge direct influences on these
industries, measures should be focused on mitigating the
direct commuting-related losses. For example, have
transportation network redundancy and diverse commut-
ing modes, or set telecommuting systems so that people
do not have to go to workplace under these circum-
stances. In addition, in order to mitigate the indirect
economic losses for sectors very sensitive to transporta-
tion losses such as Industry 4, setting sufficient inven-
tory and using diverse materials for production can get

Table 3 Direct and indirect output losses of seven sectors (million
USD)

Direct
losses

Indirect
losses

Total
losses

1. Agriculture, forestry, fish and hunting,
mining, construction

19.80 6.51 26.30

2. Manufacturing 41.89 3.57 45.45

3. Transportation and warehousing, utilities,
wholesale trade, retail trade

57.11 16.95 74.06

4. Finance and insurance, real estate and
rental, scientific and technology services,
information, management of companies,
administrative and waste services

73.87 58.88 132.74

5. Education services, health and social
services

47.94 0.41 48.35

6. Arts, entertainment and recreation,
accommodation and food services

21.67 2.52 24.19

7. Other services 23.22 4.66 27.87

Total 285.49 93.48 378.97

Industry 1
Industry 2
Industry 3
Industry 4
Industry 5
Industry 6
Industry 7

Direct Output Losses Indirect Output Losses Total Output LossesFig. 3 Direct, indirect, and total
output losses in the Greater Los
Angeles Area (million USD). The
area of the pie chart is
proportional to the losses

11 Los Angeles County is the most populous county as well as international
trade center and manufacturing center in the USA. It is also home to many
well-known companies such as Paramount Pictures and 21st Century Fox.
https://www.lacounty.gov, last accessed 2018/4/25.
12 California Employment Development Department, Labor Market Data and
Information, http://www.labormarketinfo.edd.ca.gov/geography/lmi-by-
county.html, last accessed 2018/4/25.
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producers well prepared for consequential shocks such
as shortage of supplies.

6 Conclusion and Future Work

The transportation disturbances caused by natural and
man-made hazards have been raising more attention
due to the rising frequency and severity of adversities

that expose the transportation infrastructure. This expo-
sure calls for an integrated, multi-disciplinary investiga-
tion of urban mobility issues that bring together insights
from fields of engineering and economics. Increased
transportation costs, such as fuel costs, are only part
of the total impacts of urban mobility disturbances.
The propagation of disruptions based on the economic
linkages between industries and regions cannot be
ignored.

county: Ventura
Losses: 19.1

county: San Bernardino
Losses: 34.5

county: Riverside
Losses: 43.1county: Orange

Losses: 73.7

county: Los Angeles
Losses: 208.5

0.0 225.0

Fig. 4 Estimated total output
losses in five counties (million
USD)

Table 4 Direct and indirect
output losses of five counties
(million USD)

Direct
losses

Indirect
losses

Total
losses

% of the total losses
for five counties

% changes in total
output for its own

Total output

Los Angeles 154.35 54.18 208.54 55.03% 0.0184% 1,135,518.64

Orange 55.34 18.40 73.74 19.46% 0.0190% 388,417.91

Riverside 33.40 9.73 43.13 11.38% 0.0320% 134,657.37

San Bernardino 27.86 6.62 34.49 9.10% 0.0240% 143,945.37

Ventura 14.53 4.55 19.07 5.03% 0.0266% 71,796.56

Total 285.49 93.48 378.97 100.00% 0.0202% 1,874,335.85

Table 5 Estimated total output losses in five counties (million USD)

Los Angeles Orange Riverside San Bernardino Ventura

1. Agriculture, forestry, fish and hunting, mining, construction 13.96 5.07 3.33 2.60 1.34

2. Manufacturing 25.52 8.54 5.01 4.21 2.17

3. Transportation and warehousing, utilities, wholesale trade, retail trade 40.72 14.02 8.69 6.96 3.67

4. Finance and insurance, real estate and rental, scientific and technology services,
information, management of companies, administrative and waste services

73.92 26.84 14.28 10.91 6.79

5. Education services, health and social services 26.16 9.37 5.65 4.72 2.46

6. Arts, entertainment and recreation, accommodation and food services 13.17 4.65 2.83 2.32 1.22

7. Other services 15.07 5.26 3.35 2.76 1.42

Total 208.54 73.74 43.13 34.49 19.07
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In this paper, a comprehensive multi-disciplinary frame-
work was proposed in order to investigate the economic im-
pacts of unban mobility disturbances caused by the hazard-
induced disruptions to transportation systems. Thanks to the
multi-disciplinary collaboration, explicit network modeling
and realistic hazard simulations are leveraged together with
economic impact analysis methodologies. A metropolitan
scale case study of a potential earthquake scenario in the
Greater Los Angeles Area was conducted to validate the
framework. It is found that indirect losses caused by commut-
ing disturbances account for a significant portion of the total
losses. In addition, economic losses caused by commuting
disturbances vary significantly among different industries as
well as among sub-regions of the metropolitan area, i.e.,
counties. In order to mitigate economic losses, policy-
making could benefit from the insights generated with this
study.

In terms of limitations, the inherent shortcomings of
input-output modeling should be emphasized. IO models
are linear and depend on constant coefficients of produc-
tion which makes the approach rigid. Other modeling ap-
proaches such as CGE methods may be leveraged in our
future work. In terms of the mobility and the infrastruc-
ture networks, multi-modal analysis is a current limitation
that is being worked on as well as the current inability to
deal with the route choice behavior of millions of urban
dwellers, i.e., accounting for the congestion effects.
However, these limitations do not invalidate the study as
the current version of the framework only provides a con-
servative estimate of the losses. Working on the limita-
tions, the estimated total losses are expected to increase,
potentially calling for proactive actions in terms of urban
policy-making.
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