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ABSTRACT 6 

Extreme weather events (EWEs) are significant threats to urban regions. One major reflection of such impact is 7 

the EWE-induced perturbation to urban human mobility, which has been documented in a number of recent studies. 8 

This study aims to examine the spatial distribution of such perturbation within a city among different areas that 9 

are characterized by the type of function and the distance to city center. A case study was conducted on a major 10 

rainstorm in the City of Nanjing, China in 2017, based on trajectories of all taxis in the city before and during the 11 

rainstorm. It was found that the rainstorm caused decrease in people’s travel demand throughout the city, although 12 

the magnitude of perturbation and level of mobility resilience notably differed among areas of different functional 13 

types. In addition, the urban mobility in areas distant from the city center were relatively less influenced by 14 

rainstorm.  15 
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INTRODUCTION 18 

Extreme weather events (EWEs), which are defined as events rarer than the 10th or 90th percentile of a probability 19 

density function estimated from observations at a certain place (IPCC, 2014), have been proved to increase in 20 

both frequency and intensity due to climate changes (Sobel and Tippett, 2018; Stott, 2016; Van Aalst, 2006). In 21 

the past few decades, EWEs have shown increasingly powerful influence to human beings and their habitats 22 

around the world. For example, in 2018, the top three most expensive EWEs in the United States, namely, 23 

hurricanes Florence and Michael as well as California’s wildfires caused a total damage of over $41 billion (CBS 24 

NEWS, 2018). Moreover, recent research has projected that this trend will continue to expand in the future 25 

(Forzieri et al., 2016). Thus, there is increasing awareness across business, governments and civil society of the 26 

urgency of tackling risks from EWEs (Collins, 2018). This is of particular relevance to urban regions which, with 27 

large population and intensive assets, are extremely vulnerable to threats from EWEs (Force, 2013; Godschalk, 28 

2003). 29 

In recent years, with the increasing accessibility to various human mobility data through GPS, social media 30 

platforms and mobile phones, urban mobility provides a new perspective for assessing the impacts of EWEs. 31 

Perturbation to urban mobility can reflect the overall adverse influence of EWEs associated with reduced 32 

transportation infrastructure capacities, adverse weather and commuting conditions, interrupted economic 33 

activities and disturbed social dynamics (Zhang, 2019). An increasing volume of recent research has found that 34 

the statistical properties of human mobility at the population level, described by metrics such as travel 35 

displacement and radius of gyration, would be notably perturbed. For example, Wang and Taylor (2014) found 36 
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that the number of long-distance trips decreased while the number of short-distance trips increased during 37 

hurricane Sandy. The same phenomenon was also observed in another study that examined several severe winter 38 

storms in the northeastern United States (Wang et al., 2017). Yabe et al. (2016) found that the average movement 39 

of individuals showed an immediate increase in the aftermath of the Kumamoto Earthquake and then began to 40 

decrease after about an hour. Furthermore, the distribution of radius of gyration of the population may also change 41 

during abnormal time (Lu et al., 2016; Wang et al., 2017), and the average radius of gyration became much higher 42 

immediately after Haiti earthquake.  43 

Meanwhile, despite the deviation of human mobility distribution, the overall mobility pattern has found to be 44 

resilient to some extent. For instance, Wang and Taylor (2014) found that human mobility possessed an inherent 45 

resilience even in abnormal time in a case study of Hurricane Sandy, suggesting the possibility of predicting 46 

mobility during hurricanes based on normal mobility data. Similar conclusion was also drawn in a study that 47 

investigated multiple types of natural disaster. The distribution of travel distance in abnormal time would still 48 

follow a power-law distribution and show significant correlation with that in normal time (Wang and Taylor, 49 

2016). Existing studies have also developed a few metrics to quantify human mobility perturbation and resilience. 50 

For instance, Wang and Taylor (2016) used the shifting distance of center of mass between steady state and 51 

perturbation state to quantify the variation of individual mobility pattern. Zhang et al. (2019) proposed a new 52 

metric, termed relative total distance (RTD), to measure the instantaneous urban human mobility perturbation, 53 

and another metric, termed accumulated perturbation (AP) to measure the accumulated perturbation of human 54 

mobility in a city or its subareas.  55 

Despite these prior studies, however, there is still limited understanding of urban human mobility perturbation 56 

during EWEs (Wang and Taylor, 2014). While most prior research focused on the overall human mobility 57 

perturbation in a city, there is a gap where the spatial distribution of human mobility perturbation, including the 58 

variance of perturbation among different areas in a city, has barely been examined. In the study of Zhang et al. 59 

(2019), a preliminary exploration of the spatial distribution of human mobility perturbation was conducted. It was 60 

found that the resilience of different areas in a city to the EWE impact, measured by the mobility perturbation, 61 

was significantly different. While such variance may be attributed to a range of factors, such as infrastructure 62 

service, local demographics and zone functionalities, the spatial characteristics of an urban area has been proven 63 

a major factor that is influential on people’s commuting behavior (Beecham el al., 2014) hence on their mobility 64 

patterns. Exploring the relationship between the spatial characteristics of an urban area and the mobility 65 

perturbation of population located within the area may contribute to further understanding of the factors affecting 66 

urban resilience, thus helping answer questions such as what specific impacts different areas in cities would endure 67 

during EWEs, how to develop efficient measures to predict and mitigate possible EWE-induced impacts, and 68 

ultimately how to enhance the overall resilience of urban population when influenced by the EWEs. 69 

Motivated by the above gap, this study aims to examine the spatial distribution of the impacts of EWEs on urban 70 

human mobility, and analyze the variance of mobility perturbation among urban areas with diverse spatial 71 

characteristics. Using the aforementioned two metrics (RTD and AP) developed by Zhang et al. (2019), this study 72 

examines the relationship between the EWE-induced human mobility perturbation in an urban area and the spatial 73 

characteristics of the area. The spatial characteristics of an urban area are describe based on its type of function 74 

that can be represented by points of interest (POIs) within the area, and its geolocation that is described based on 75 

its distance to the city center. Using taxi trajectory data, a case study was conducted in the City of Nanjing, the 76 

capital of Jiangsu Province in China. The case study focused on a major rainstorm event in June 2017, which 77 

severely impacted human mobility in the city.  78 

Understanding and predicting human mobility in urban area has great importance to urban planning (Horner & 79 

O’Kelly, 2001), traffic prediction (Krings et al., 2009) as well as epidemics (Belik et al., 2011). Understanding 80 

human mobility under EWEs, in particular, would play a critical role in disaster response and risk reduction. 81 

Because without a deeper understanding of human mobility under EWEs, overcrowding in certain areas or 82 

overloading of infrastructure may affect the normal functions of cities. This study contributes to the existing body 83 

of knowledge by connecting the analysis of EWE-induced mobility perturbation with spatial characteristics of 84 

different areas in a city, which could shed new light on how and why human mobility perturbation varies within 85 

a city, and inform the development of appropriate area-specific measures to mitigate the impacts of EWEs on 86 

urban human mobility. Moreover, this study is of practical significance, especially for policy makers and even 87 

city makers, because the findings can provide guidance for urban planning as well as facility layout problems. 88 

DATA AND METHODS 89 

Rainstorm in Nanjing 90 

The city of Nanjing covers a total area of 6,587 km2 and consists of 94 sub-districts. It has a total population of 91 
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8.44 million people. The city experienced a major rainstorm on June 10, 2017, with a total precipitation of over 92 

210 mm. The rainstorm lasted for about one day, and the whole city was severely affected. Based on the 93 

precipitation records obtained from Jiangsu Meteorological Bureau, the hourly precipitation in the city during the 94 

rainstorm is presented in Table 1. The peak hourly rainfall was over 30mm, which exceeded the threshold of the 95 

highest level of rainfall intensity set by the American Meteorological Society (AMS, 2012), setting a new 96 

meteorological record of Nanjing in 66 years (Xinhua, 2017).  97 

 98 

Table 1.  Hourly Precipitation of Nanjing Rainstorm on June 10, 2017 99 

Time Hourly participation 

(mm) 

Time Hourly participation 

(mm) 

0:00 0.1 12:00 17.39 

1:00 0.2 13:00 24.4 

2:00 1.55 14:00 9.83 

3:00 4.88 15:00 1.12 

4:00 5.07 16:00 3.43 

5:00 0.68 17:00 11.66 

6:00 5.17 18:00 7.91 

7:00 17.75 19:00 2.61 

8:00 24.15 20:00 0.38 

9:00 22.12 21:00 0.29 

10:00 30.68 22:00 0.15  

11:00 18.78 23:00 0.1 

   100 

Data description 101 

Taxi trajectory data 102 

In Nanjing, every taxi reports its vehicle ID, timestamp, longitude, latitude, velocity, angle and passenger status 103 

to a central server every 10 seconds during operation through a sensor equipped on it. The data were collected by 104 

local authority for transportation management purpose and were not openly available. By working with the local 105 

authority, we accessed the trajectory data of all taxis in the city over a period covering the day of the rainstorm 106 

(from June 3, 2017 to June 24, 2017). The dataset included about 0.5 billion data entries. The vehicle IDs in the 107 

data provided to the us were partially anonymized to protect privacy. The data were cleaned by removing 108 

corrupted entries and merging duplicate ones caused by sensor malfunction. A few examples of data entries are 109 

shown in Table 2. The number 0 in passenger status means no passenger in the car and 1 means the opposite. 110 

Table 2.  Examples of Taxi Trajectory Data Entries 111 

Vehicle ID Timestamp Longitude Latitude Velocity Angle Passenger Status 

A9378* 170603004852 118.77095 32.05263 30.89 110 0 

A9680* 170603004858 118.80852 32.02560 31.97 92 1 

A8866* 170603004847 118.78297 31.99775 0.47 122 1 

A9487* 170603004857 118.77473 32.04868 20.77 192 0 

A7668* 170603004418 118.71339 32.12084 49.97 52 0 

A9764* 170603004850 118.78974 32.04553 8.1 182 0 

AB693* 170603004850 118.71868 32.02612 64.98 118 1 

 112 

POI data 113 
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We collected points of interest (POI) data of the entire city from AMap (Open Platform of Amap, 2019), one of 114 

the most widely used AutoNavi apps in China, through its online application programming interface (API). The 115 

POI dataset consisted of 18,2413 data entries. Each entry had 9 fields, including POI name, POI category, POI 116 

type, address, province, city, county, longitude and latitude. There were totally 14 POI categories, which were 117 

further divided into 103 POI types. These categories are listed in Table 3, and a few examples of POI data entries 118 

are shown in Table 4. 119 

 120 

Table 3.  A List of POI Categories 121 

Category  

Catering services Commercial real estate 

Scenic spots Accommodation services 

Public facilities Sports and leisure services 

Transportation facilities services Life services 

Enterprises Medical and health care services 

Shopping services Government agencies and social organizations 

Finance and insurance services Scientific and educational cultural services 

 122 

Table 4.  Examples of POI data entries 123 

POI name Category Province City County Longitude Latitude 

** Supermarket Shopping Service Jiangsu Nanjing Liuhe 118.92477 32.32344 

**Plaza Shopping service Jiangsu Nanjing Liuhe 118.80955 32.52962 

**Drugstore Health care service Jiangsu Nanjing  Xuanwu 118.82854 32.10565 

**Hospital Health care service Jiangsu Nanjing Gulou 118.74733 32.06671 

**Restaurant Catering service Jiangsu Nanjing Jiangning 118.86836 31.68686 

 124 

Methods 125 

Identification of functional area  126 

Drawing on prior research about urban functionalities (Chi et al. 2016, Yuan et al. 2012), the type of function of 127 

an urban area belongs to one of the seven categories shown in Table 5. The table also includes a mapping between 128 

these categories and the default POI categories in the POI data set. 129 

Table 5. Function Category of POI and Function Types of Urban Area 130 

POI categories in AMap Type of function of urban areas 

Commercial real estate Real estate 

Medical and health care services 

Scientific and educational cultural services 

Education and health care 

Catering services 

Accommodation services 

Shopping services 

Finance and insurance services 

Life services 

Sports and leisure services 

Catering and entertainment 

Scenic spots Parkland 

Public facilities 

Transportation facilities services 

Public service facilities 
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Government agencies and social organizations Government agencies and social organizations 

Enterprises Enterprises 

 131 

There were 94 sub-districts in Nanjing, and 93 of them covered an area greater than 1 square kilometer. For fine-132 

grained analysis, we firstly needed to divide the city into square units by certain scale. A smaller unit would likely 133 

contribute to the accuracy of the identification of its function type, but would contain fewer trajectory data entries, 134 

decreasing the reliability of the calculated mobility perturbation. After comparing the results which were 135 

calculated respectively based on 2km × 2km, 1 km × 1km and 500m × 500m grids, we decided to use 1km × 136 

1km grids, which divided the city into around 6400 square units. The distribution of units in terms of the number 137 

of POIs within their boundaries is shown in Figure 1.  138 

 139 

Figure 1.  The Number of POIs per Unit 140 

To identify the type of function of each unit, firstly, the numbers of POIs belonging to each of the seven function 141 

types were counted for each unit, based on the POI data collected from AMap. Next, we adopted two indicators, 142 

namely the frequency density index (Fi) and the ratio index (Ci), which were calculated according to Eq. (7) and 143 

Eq. (8) (Chi et al., 2016): 144 

F𝑖 =
𝑛𝑖

𝑁𝑖
 ( 𝑖 = 1,2,3,4,5,6,7) (7) 145 

C𝑖 =
𝐹𝑖

∑ 𝐹𝑖
7
𝑖=1

 ( 𝑖 = 1,2,3,4,5,6,7) (8) 146 

where Ni is the total number of i-th type of POI, and ni is the number of i-th type of POI in a unit. Each unity could 147 

be represented by a sequence as follows: [Unit ID, C1, C2, C3, C4, C5, C6, C7]. Then, the function type of a unit 148 

was determined based on the following principle (Chi et al. 2016):  149 

● When Ci of a unit exceeded 50% for any value of i, this unit was considered to have function type i; 150 

● When Ci of a unit was less than 50% for all values of i, this unit was considered to have a mixed function 151 

type; 152 

● When there was no POI within a unit, this unit was considered invalid and hence excluded from the analysis. 153 

After the function type of every unit within the city boundary was identified, the collection of all units with the 154 

same function type i was referred to as functional area i hereafter in the paper. In other words, a functional area 155 

refers to a collection of units of the same function type distributed across the city. By definition, there were seven 156 

types of functional areas.  157 

Assessment of human mobility perturbation 158 

In this study, relative total displacement (RTD) is used to measure instantaneous human mobility perturbation of 159 

a certain functional area under EWEs based on taxi trajectory data. As a metric measuring human mobility, total 160 

displacement (TD) is the accumulated consecutive displacements of all taxis in a certain area during a period of 161 
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time (Zhang et al., 2019). Based on that definition, total displacement of the x-th unit during the t-th period can 162 

be calculated based on Eq. (1): 163 

TDx,t  = ∑ ∑ 𝑑𝑖𝑗

𝑛−1

𝑖=1

𝑚

𝑗=1

(1) 164 

 165 

where m is the number of taxis traveling in x-th area of the city during t-th timespan, n is the number of locations 166 

the j-th taxi visits during this timespan and dij is the i-th displacement in the trajectory of the j-th individual, which 167 

can be calculated based on Eq. (2) (Wang and Taylor 2016): 168 

dij  = 2𝑟 × sin−1 (√sin2(
𝜃𝑖+1,𝑗 − 𝜃𝑖,𝑗

2
) + cos 𝜃𝑖+1,𝑗 cos 𝜃𝑖,𝑗 sin2(

𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗

2
)) (2) 169 

where r is the radius of the earth, 𝜃𝑖,𝑗  and 𝜑𝑖,𝑗  are the latitude and longitude of the former position in the i-170 

displacement of the j-th taxi, and 𝜃𝑖+1,𝑗 and 𝜑𝑖+1,𝑗 are the latitude and longitude of the latter one. 171 

To calculate the deviation of TD from normal , TD , a baseline showing the mobility of taxis in normal time, and 172 

RTD can be computed based on Eq. (3) and Eq. (4) (Zhang et al., 2019), where x means the sequence of the unit 173 

and t means the sequence of time period: 174 

TDx,t  =
∑ 𝑇𝐷𝑖,𝑥,𝑡

𝑀
𝑖=1

𝑀
(3) 175 

where these 𝑇𝐷 values are associated with the same areas, as well as with the same hour of the same day of the 176 

week, to avoid daily periodicity, over two weeks before and two weeks after the rainstorm. Then, RTD of the x-177 

th unit during the t-th period can be calculated by normalizing TD with the baseline, TD : 178 

𝑅𝑇𝐷𝑥,𝑡  =
𝑇𝐷𝑥,𝑡

𝑇𝐷𝑥,𝑡

× 100% (4) 179 

Quantification of accumulated perturbation impacts on human mobility 180 

As an EWE develops over time, its intensity changes, leading to variations in its impacts. These variations, coupled 181 

with the fact that urban population tend to adapt to EWE-induced impacts by dynamically adjusting their travel 182 

preferences and behaviors (Zanni & Ryley, 2015), may cause human mobility perturbation to be highly fluctuant. 183 

It is therefore important to track the fluctuations and evolution of human mobility, and assess the accumulated 184 

perturbation impacts throughout the entire timespan of the EWE, for which purpose the metric AP was introduced 185 

(Zhang 2019). The AP value of the x-th unit throughout the rainstorm can be calculated based on Eq. (5): 186 

𝐴𝑃𝑥  = ∫
1 − 𝑅𝑇𝐷𝑥,𝑡

𝑡1 − 𝑡0
𝑑𝑡

𝑡1

𝑡0

 (5) 187 

where 𝑡0 is the moment of occurrence of perturbation in x-th area, and 𝑡1 is the moment when human mobility 188 

totally returns to a normal level. 189 

It needs to be noted that, while in general it is natural to expect human mobility to be impeded by the EWEs, there 190 

also exist units where TD might increase in certain short periods of time during the EWEs, especially when the 191 

TD is assessed in small spatial scale (e.g. 1 km x 1 km or less). Although decreases and increases in TD are both 192 

perturbation to urban mobility, when calculating AP, only decreases in TD are considered, as they indicate 193 

negative effect on urban mobility, which is the primary concern when assessing the perturbation to human mobility 194 

and resilience of the urban system. Increases of DP in a unit, which may result from temporary increases of 195 

operating taxi numbers and varying traffic conditions, indicate that the unit is not experiencing negative impacts 196 

during these short periods. If the increases of DP are counted in AP, it would lower the values of AP and hence 197 

result in underestimation of the impacts of EWEs. Therefore, when calculating AP, only RTD values between 198 

[0,1] were integrated in this study, leading to an adjusted version of Eq. (5): 199 

𝐴𝑃𝑥  = ∫
1 − 𝑅𝑇𝐷𝑥,𝑡

𝑡1 − 𝑡0
𝑑𝑡

𝑡1

𝑡0

       (𝑤ℎ𝑒𝑛 𝑅𝑇𝐷𝑥,𝑡 < 1) (6) 200 

Calculating inflow and outflow 201 
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The inflow and outflow of every type of functional area, defined as the number of trips arriving at or leaving the 202 

functional area, were calculated in this study. After preprocessing the trajectory data, the information of each trip 203 

made by taxi passengers, including its start time, start location, end time and end location, was extracted, as shown 204 

in Table 6. When a trip started in a unit, it was counted in the outflow of the functional area that the unit belonged 205 

to; Similarly, when a trip ended in a unit, it was counted in the inflow of the functional area that the unit belonged 206 

to. 207 

 208 

Table 6.  Examples of Taxi Ride Record 209 

Start Time Start Longitude Start Latitude End Time End Longitude End Latitude 

0603061324 118.8838 32.1339 0603061824 118.92477 32.32344 

0603065312 118.8827 32.1301 0603071252 118.80955 32.52962 

0603075306 118.8869 32.1310 0603084311 118.82854 32.10565 

0603093418 118.9446 32.1098 0603093838 118.74733 32.06671 

 RESULTS 210 

Functional area identification 211 

Based on the method explained in the last section, the function type of each unit within the city boundary was 212 

identified, as depicted in Figure 2. 213 

 214 

Figure 2.  Spatial distribution of Different Functional Areas in Nanjing 215 
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In Figure 2, the spatial distributions of eight different functional areas (including mixed functional area) are plotted. 216 

Each type of functional area is represented by a different color. The white area within the city boundary indicates 217 

invalid units. As summarized in Table 7, there were a total of 4506 valid units. Mixed area and enterprises area 218 

accounted for about 56% of all valid units. Real estate area, education and health care area, parkland area and 219 

government agencies & social organization area only made up a small proportion of all valid units. In addition, as 220 

shown in Figure 2, mixed function area and catering & entertainment area were mainly distributed around city 221 

center. Parkland area was mainly located in several regions in the city, and enterprises area showed a trend of 222 

aggregation. Education & health care area, public service facilities area and government agency & social 223 

organizations area shared a similar spatial distribution. Education & health care area was mainly located in the 224 

eastern and southern suburban regions, while the majority of public service facility area was located in western 225 

and northern suburban regions.  226 

Table 7.  The Number of Different Functional Areas 227 

Functional Area Number of units Percentage (%) 

Real Estate 55 1.22 

Education and Health Care 116 2.57 

Catering and Entertainment 716 15.89 

Parkland 149 3.31 

Public Service Facilities 739 16.40 

Government Agencies and Social Organizations 193 4.20 

Enterprises 1444 32.05 

Mixed Function 1094 24.28 

Real Estate 23 2.10 

Education and Health Care 40 3.66 

Catering and Entertainment 355 32.45 

Parkland 20 1.83 

Public Service Facilities 104 9.51 

Government Agencies and Social Organizations 123 11.24 

Enterprises 429 39.21 

 228 

Mobility perturbation in different functional areas 229 

Selected area 230 

Since each unit only covered an area of one square kilometer and the trajectory data were only collected from 231 

taxis, the data entries in some areas were limited for statistical analysis. To ensure the reliability of the results, 232 

units with insufficient data points should be excluded. Specifically, if TD value of a unit was 0 in a period of one 233 

hour, this period was considered as invalid, and only units with at least 5 valid periods during the entire day of the 234 

rainstorm were considered valid units and included in the analysis. The distribution of valid units and their TD 235 

values in normal time and during the rainstorm are illustrated in Figure 3, in which blackish color indicates higher 236 

TD value and whitish color indicates otherwise. Figure indicates the TD values of the valid units in normal time 237 

and during the rainstorm were highly alike, with slight variations in certain regions as highlighted in Figure 3. 238 
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 239 

Figure 3.  The TD of Units in Normal Time and During Rainstorm 240 

Inflow and outflow in different functional areas 241 

The function of an area has a strong correlation with the traveling behavior of people who visit the area and 242 

previous studies adopted inflow and outflow of a certain area to characterize such traveling behavior (Yuan et al., 243 

2012). In this section, the change in inflow and outflow of different functional areas was analyzed to suggest how 244 

people’s travel behavior was affected under EWEs. The results are illustrated in Figures 4 and 5. The outflow and 245 

inflow in catering and entertainment area, enterprises area and mixed function area were higher than other types 246 

of functional areas by an order of magnitude, thus they were plotted in two separate subfigures in Figure 4. For 247 

all types of functional areas, daily inflow and outflow decreased during the rainstorm, which suggested the 248 

rainstorm in general significantly affected the travel demand of the urban population. Among the eight types of 249 

functional areas, public service facility area and government & social organizations area were highly affected. 250 

The changes in real estate area, parkland area and education & health care area were a little less significant. 251 

Catering & entertainment area, enterprises area and mixed function area, with high volumes of inflow and outflow 252 

both in normal time and during rainstorm, were only slightly affected.  253 

As can be seen in Figure 5, public services facility area, parkland area and government & social organization 254 

area showed biggest variations from normal time, while other areas were relatively alike. This was probably 255 

because in the above three types of areas, human activities were sensitive to the impact of EWEs, while human 256 

activities in other functional areas were less elastic. Specifically, public service facility area was mainly 257 

characterized by POIs such as subway stations, bus stations and other public transportation facilities. The above 258 

results indicated that, under the influence of rainstorm, people were less likely to choose public transportation, 259 

causing the reduction of travel demand in public service facility related units. According to Figure 5, the impact 260 

lasted for an entire day. Similarly, people tended to cancel their trips to parkland or postpone their schedule to 261 

government agencies and social organizations during rainstorm, contributing to lower inflow and outflow in 262 

these functional areas. The reduction of inflow and outflow in parkland area started from around 9:00 am and 263 

lasted until 19:00 pm, while that in government & social organizations area started from 7:00 am and lasted 264 

through midnight.  265 



Zhang et al. Urban Mobility Perturbation and its Spatial Distribution 
 

WiPe – Data and Resilience: Opportunities and Challenges 

Proceedings of the 17th ISCRAM Conference – Blacksburg, VA, USA May 2020 

Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 

 

 266 

(a)  267 

 268 

(b) 269 

Figure 4.  The Inflow and Outflow of Each Functional Area 270 
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 271 

Figure 5.  The Inflow and Outflow of Each Function Area throughout the Day 272 

TD in different functional areas 273 

To further analyze and compare the mobility perturbation across different types of functional areas, we calculated 274 

TD and AP for each type of functional areas. The moment of occurrence of perturbation and the moment when 275 

human mobility totally returns to a normal level were determined using the same approach used in Zhang et al. 276 

(2019). The indicator, RTD, assesses the instantaneous perturbation of urban mobility at a given moment, while 277 

the indicator AP assesses the accumulated perturbation of urban mobility over the entire lifespan of the EWE. AP, 278 

whose value varies between [0,1], indicates the resilience of urban mobility to the impact of EWEs. Smaller AP 279 

values indicates higher levels of resilience. According to Table 9, enterprises areas were the most resilient among 280 

all eight types of functional areas, and parkland areas were the least resilient. Maybe it’s because that the rainstorm 281 

happened on Saturday when people normally spend their time in parkland areas. Influenced by rainstorm, the 282 

operating taxis in parkland areas decreased seriously, contributing to higher AP. However, for enterprises area, 283 

human mobility is mostly contributed from commuting behaviors, which are relatively more stable and less 284 

influenced by rainstorm. Therefore, enterprises areas showed high resilience during rainstorm. It can be also 285 

informed that though real estate areas and education & health care areas experienced similar changes in inflow 286 

and outflow, TD of these two types of areas were influenced differently. More specifically, TD in real estate areas 287 

decreased during rainstorm, whereas TD in education and health care areas increased. Furthermore, education and 288 
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health care areas were more resilient than real estate areas. It was also found that, even though highly influenced 289 

in terms of travel demand, public service facility areas were relatively resilient. In addition, the spatial variance 290 

of AP is illustrated in Figure 6. It is shown that units located in different regions, even if belonging to the same 291 

function area, may have significantly different AP values. This suggested that the AP value of a unit was to some 292 

extent determined by its spatial characteristic. 293 

Table 9.  TD and AP of Each Functional Area 294 

Area TD during rainstorm (km) TD in normal time (km) AP 

0.Real Estate 5506310.50  6002198.00  0.1585 

1.Education and Health Care 2203730.30  2173677.60  0.1170   

2.Catering and Entertainment 212458820.00  242035220.00  0.1278 

3.Parkland 779604.46  1344520.40  0.4140 

4.Public Service Facilities 2228126.60  2068161.10  0.1368   

5.Government and Social 

Organizations 
828194.60  769447.50  0.1531  

6.Enterprises 50175947.00  51352692.00  0.1031  

7.Mixed Function Area 309718640.00  360035670.00  0.1293  

 295 

When comparing the temporal variance of TD in normal time and during rainstorm (see Figure 7), it was found 296 

that different functional areas showed different degrees of resilience. While several functional areas experienced 297 

an obvious decrease in TD, other functional areas saw increases in TD in certain short periods during the rainstorm. 298 

For catering & entertainment areas and mixed function areas, TD began to be affected from 7:00 am, and then the 299 

impact gradually expanded. Parkland areas were the most affected, and the impact lasted from 7:00 am to 9:00 300 

pm, which suggested human mobility in these areas was more sensitive to the influence of rainstorm than others.  301 

 302 

Figure 6.  The Spatial Variance of AP in Different Functional Areas 303 

 304 

   305 

 306 
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 307 

Figure 7.  TD and RTD Curve for Each Functional Area 308 

Distance to city center and mobility perturbation 309 

As Figure 6 suggests, units of the same functional area may have significantly different AP values, at least partly 310 

depending on where in the city they were located. One major factor that determined the spatial characteristic of a 311 

unit was its distance to the city center. Hence, it was hypothesized that a unit’s distance to city center may 312 

determine its magnitude of mobility perturbation. To test this hypothesis, we depicted Figure 8, in which blackish 313 

color indicates smaller AP values and hence higher resilience, and whitish color indicates the opposite. It can be 314 

seen in the figure that the AP values of units near the city center were notably larger, while those located in 315 

suburban areas were smaller. The relationship between a unit’s distance to city center and its RTD and AP values 316 

is further shown in Figure 9. This results suggested that, for all types of functional areas, units that were distant 317 

from the city center were relatively less influenced by the rainstorm.  318 

 319 

Figure 8.  The Distribution of AP in Selected Area 320 

 321 

 322 
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 323 

Figure 9.  Correlation between Distance to City Center and AP Values   324 

 325 

Figure 10.  Correlation between Distance to City Center and RTD Values   326 

 327 

CONCLUSIONS 328 

This study aimed to explore the correlation between EWE-induced human mobility perturbation in urban areas 329 

and their spatial characteristics, by examining a case study of a major rainstorm in the City of Nanjing in 2017. 330 

We divided Nanjing into small units, and extracted the spatial characteristic of these units, including their function 331 

type and distance to city center. Based on taxi trajectory data before, during and after the rainstorm, we assessed 332 

the spatial and temporal characteristics of human mobility perturbation in each unit, and correlated the assessment 333 

results with the spatial characteristics of the units. The findings showed that travel demand decreased in all types 334 

of functional areas during rainstorm. It was also found that human mobility in different types of functional areas 335 

were influenced by the EWEs to different degrees, showing different levels of resilience. In addition, areas far 336 

from the city center were generally less influenced by the rainstorm. These findings are expected to contribute to 337 

the understanding of the variance of mobility perturbation among different areas in a city, which would allow a 338 

more fine-grained prediction of influence caused by EWEs, hence supporting the mitigation of EWE-induced 339 

impacts and strengthening the urban crisis management practices.  340 

That being said, there are several limitations in this study that are noteworthy. Firstly, urban areas may have 341 

certain spatial characteristics that are not fully reflected by their POIs, therefore complementary data may be 342 

needed to better represent their spatial characteristics. Secondly, the human mobility and its perturbation was 343 

assessed based on taxi trajectories, which could not reflect the mobility associated with other modes of transport, 344 

and due to the nature of the trajectory data, the analysis could not be done at the individual passenger level. This 345 

issue could be resolved once other types of human mobility data such as mobile phone trajectories are made 346 
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available. More importantly, this study mainly focused on unrevealing the statistical relationships between urban 347 

areas’ spatial characteristics and their EWE-induced mobility perturbation, however, the underlying mechanisms 348 

that shape such relationships still require further investigation in future research. 349 
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